Solve for a
\left\{\begin{matrix}a=\left(y-x\right)\cot(p)\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(p>\frac{\pi n_{3}}{2}\text{ and }p<\frac{\pi n_{3}}{2}+\frac{\pi }{2}\right)\\a\in \mathrm{R}\text{, }&y=x\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }p=\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }p=\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
x+a\tan(p)=y
Swap sides so that all variable terms are on the left hand side.
a\tan(p)=y-x
Subtract x from both sides.
\tan(p)a=y-x
The equation is in standard form.
\frac{\tan(p)a}{\tan(p)}=\frac{y-x}{\tan(p)}
Divide both sides by \tan(p).
a=\frac{y-x}{\tan(p)}
Dividing by \tan(p) undoes the multiplication by \tan(p).
a=\left(y-x\right)\cot(p)
Divide y-x by \tan(p).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}