Solve for g
g=\frac{-x+y-4}{2}
x\neq 0
Solve for x
x=y-2g-4
y\neq 2g+4
Graph
Share
Copied to clipboard
yx=xx+x\times 4+2xg
Multiply both sides of the equation by x.
yx=x^{2}+x\times 4+2xg
Multiply x and x to get x^{2}.
x^{2}+x\times 4+2xg=yx
Swap sides so that all variable terms are on the left hand side.
x\times 4+2xg=yx-x^{2}
Subtract x^{2} from both sides.
2xg=yx-x^{2}-x\times 4
Subtract x\times 4 from both sides.
2xg=yx-x^{2}-4x
Multiply -1 and 4 to get -4.
2xg=-x^{2}+xy-4x
The equation is in standard form.
\frac{2xg}{2x}=\frac{x\left(-x+y-4\right)}{2x}
Divide both sides by 2x.
g=\frac{x\left(-x+y-4\right)}{2x}
Dividing by 2x undoes the multiplication by 2x.
g=\frac{y}{2}-\frac{x}{2}-2
Divide x\left(-4+y-x\right) by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}