Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{q-y}{x^{n}}\text{, }&n=0\text{ or }x\neq 0\\p\in \mathrm{C}\text{, }&y=q\text{ and }x=0\text{ and }n\neq 0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{q-y}{x^{n}}\text{, }&x>0\text{ or }\left(Denominator(n)\text{bmod}2=1\text{ and }x<0\right)\\p\in \mathrm{R}\text{, }&y=q\text{ and }x=0\text{ and }n>0\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{2\pi n_{1}i}{\ln(x)}+\log_{x}\left(\frac{y-q}{p}\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq q\text{ and }p\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\n\in \mathrm{C}\text{, }&\left(y=q\text{ and }p=0\right)\text{ or }\left(x=0\text{ and }y=q\text{ and }p\neq 0\right)\text{ or }\left(x=1\text{ and }p=y-q\text{ and }y\neq q\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\log_{x}\left(\frac{y-q}{p}\right)\text{, }&\left(y<q\text{ and }p<0\text{ and }x\neq 1\text{ and }x>0\right)\text{ or }\left(y>q\text{ and }p>0\text{ and }x\neq 1\text{ and }x>0\right)\\n\in \mathrm{R}\text{, }&\left(y=q\text{ and }p=0\text{ and }x>0\right)\text{ or }\left(y=q\text{ and }p=0\text{ and }x<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(y=p+q\text{ and }p\neq 0\text{ and }x=1\right)\text{ or }\left(y=q-p\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\text{ and }p\neq 0\text{ and }x=-1\right)\\n>0\text{, }&x=0\text{ and }y=q\end{matrix}\right.
Graph
Share
Copied to clipboard
px^{n}+q=y
Swap sides so that all variable terms are on the left hand side.
px^{n}=y-q
Subtract q from both sides.
x^{n}p=y-q
The equation is in standard form.
\frac{x^{n}p}{x^{n}}=\frac{y-q}{x^{n}}
Divide both sides by x^{n}.
p=\frac{y-q}{x^{n}}
Dividing by x^{n} undoes the multiplication by x^{n}.
px^{n}+q=y
Swap sides so that all variable terms are on the left hand side.
px^{n}=y-q
Subtract q from both sides.
x^{n}p=y-q
The equation is in standard form.
\frac{x^{n}p}{x^{n}}=\frac{y-q}{x^{n}}
Divide both sides by x^{n}.
p=\frac{y-q}{x^{n}}
Dividing by x^{n} undoes the multiplication by x^{n}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}