Solve for n
\left\{\begin{matrix}n=-\frac{\cos(p)-y}{p\psi }\text{, }&p\neq 0\text{ and }\psi \neq 0\\n\in \mathrm{R}\text{, }&\left(y=1\text{ and }p=0\right)\text{ or }\left(y=\cos(p)\text{ and }\psi =0\text{ and }p\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
\psi np+\cos(p)=y
Swap sides so that all variable terms are on the left hand side.
\psi np=y-\cos(p)
Subtract \cos(p) from both sides.
p\psi n=-\cos(p)+y
The equation is in standard form.
\frac{p\psi n}{p\psi }=\frac{-\cos(p)+y}{p\psi }
Divide both sides by \psi p.
n=\frac{-\cos(p)+y}{p\psi }
Dividing by \psi p undoes the multiplication by \psi p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}