Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{12x-y+36}{x^{2}}\text{, }&x\neq 0\\k\in \mathrm{C}\text{, }&y=36\text{ and }x=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{12x-y+36}{x^{2}}\text{, }&x\neq 0\\k\in \mathrm{R}\text{, }&y=36\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{ky-36k+36}-6}{k}\text{; }x=-\frac{\sqrt{ky-36k+36}+6}{k}\text{, }&k\neq 0\\x=\frac{y-36}{12}\text{, }&k=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{ky-36k+36}-6}{k}\text{; }x=-\frac{\sqrt{ky-36k+36}+6}{k}\text{, }&\left(k>0\text{ or }y\leq -\frac{36-36k}{k}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }k\neq 0\right)\text{ and }\left(k<0\text{ or }\left(k\neq 0\text{ and }y\geq -\frac{36-36k}{k}\right)\right)\\x=\frac{y-36}{12}\text{, }&k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}+12x+36=y
Swap sides so that all variable terms are on the left hand side.
kx^{2}+36=y-12x
Subtract 12x from both sides.
kx^{2}=y-12x-36
Subtract 36 from both sides.
x^{2}k=-12x+y-36
The equation is in standard form.
\frac{x^{2}k}{x^{2}}=\frac{-12x+y-36}{x^{2}}
Divide both sides by x^{2}.
k=\frac{-12x+y-36}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
kx^{2}+12x+36=y
Swap sides so that all variable terms are on the left hand side.
kx^{2}+36=y-12x
Subtract 12x from both sides.
kx^{2}=y-12x-36
Subtract 36 from both sides.
x^{2}k=-12x+y-36
The equation is in standard form.
\frac{x^{2}k}{x^{2}}=\frac{-12x+y-36}{x^{2}}
Divide both sides by x^{2}.
k=\frac{-12x+y-36}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}