Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{2+y-6x}{4x-3}\text{, }&x\neq \frac{3}{4}\\k\in \mathrm{C}\text{, }&y=\frac{5}{2}\text{ and }x=\frac{3}{4}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{y-3k+2}{2\left(2k-3\right)}\text{, }&k\neq \frac{3}{2}\\x\in \mathrm{C}\text{, }&y=\frac{5}{2}\text{ and }k=\frac{3}{2}\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{2+y-6x}{4x-3}\text{, }&x\neq \frac{3}{4}\\k\in \mathrm{R}\text{, }&y=\frac{5}{2}\text{ and }x=\frac{3}{4}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{y-3k+2}{2\left(2k-3\right)}\text{, }&k\neq \frac{3}{2}\\x\in \mathrm{R}\text{, }&y=\frac{5}{2}\text{ and }k=\frac{3}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
y=2kx+k+\left(1-k\right)\left(6x-2\right)
Use the distributive property to multiply k by 2x+1.
y=2kx+k+6x-2-6kx+2k
Use the distributive property to multiply 1-k by 6x-2.
y=-4kx+k+6x-2+2k
Combine 2kx and -6kx to get -4kx.
y=-4kx+3k+6x-2
Combine k and 2k to get 3k.
-4kx+3k+6x-2=y
Swap sides so that all variable terms are on the left hand side.
-4kx+3k-2=y-6x
Subtract 6x from both sides.
-4kx+3k=y-6x+2
Add 2 to both sides.
\left(-4x+3\right)k=y-6x+2
Combine all terms containing k.
\left(3-4x\right)k=2+y-6x
The equation is in standard form.
\frac{\left(3-4x\right)k}{3-4x}=\frac{2+y-6x}{3-4x}
Divide both sides by -4x+3.
k=\frac{2+y-6x}{3-4x}
Dividing by -4x+3 undoes the multiplication by -4x+3.
y=2kx+k+\left(1-k\right)\left(6x-2\right)
Use the distributive property to multiply k by 2x+1.
y=2kx+k+6x-2-6kx+2k
Use the distributive property to multiply 1-k by 6x-2.
y=-4kx+k+6x-2+2k
Combine 2kx and -6kx to get -4kx.
y=-4kx+3k+6x-2
Combine k and 2k to get 3k.
-4kx+3k+6x-2=y
Swap sides so that all variable terms are on the left hand side.
-4kx+6x-2=y-3k
Subtract 3k from both sides.
-4kx+6x=y-3k+2
Add 2 to both sides.
\left(-4k+6\right)x=y-3k+2
Combine all terms containing x.
\left(6-4k\right)x=y-3k+2
The equation is in standard form.
\frac{\left(6-4k\right)x}{6-4k}=\frac{y-3k+2}{6-4k}
Divide both sides by -4k+6.
x=\frac{y-3k+2}{6-4k}
Dividing by -4k+6 undoes the multiplication by -4k+6.
x=\frac{y-3k+2}{2\left(3-2k\right)}
Divide y-3k+2 by -4k+6.
y=2kx+k+\left(1-k\right)\left(6x-2\right)
Use the distributive property to multiply k by 2x+1.
y=2kx+k+6x-2-6kx+2k
Use the distributive property to multiply 1-k by 6x-2.
y=-4kx+k+6x-2+2k
Combine 2kx and -6kx to get -4kx.
y=-4kx+3k+6x-2
Combine k and 2k to get 3k.
-4kx+3k+6x-2=y
Swap sides so that all variable terms are on the left hand side.
-4kx+3k-2=y-6x
Subtract 6x from both sides.
-4kx+3k=y-6x+2
Add 2 to both sides.
\left(-4x+3\right)k=y-6x+2
Combine all terms containing k.
\left(3-4x\right)k=2+y-6x
The equation is in standard form.
\frac{\left(3-4x\right)k}{3-4x}=\frac{2+y-6x}{3-4x}
Divide both sides by -4x+3.
k=\frac{2+y-6x}{3-4x}
Dividing by -4x+3 undoes the multiplication by -4x+3.
y=2kx+k+\left(1-k\right)\left(6x-2\right)
Use the distributive property to multiply k by 2x+1.
y=2kx+k+6x-2-6kx+2k
Use the distributive property to multiply 1-k by 6x-2.
y=-4kx+k+6x-2+2k
Combine 2kx and -6kx to get -4kx.
y=-4kx+3k+6x-2
Combine k and 2k to get 3k.
-4kx+3k+6x-2=y
Swap sides so that all variable terms are on the left hand side.
-4kx+6x-2=y-3k
Subtract 3k from both sides.
-4kx+6x=y-3k+2
Add 2 to both sides.
\left(-4k+6\right)x=y-3k+2
Combine all terms containing x.
\left(6-4k\right)x=y-3k+2
The equation is in standard form.
\frac{\left(6-4k\right)x}{6-4k}=\frac{y-3k+2}{6-4k}
Divide both sides by -4k+6.
x=\frac{y-3k+2}{6-4k}
Dividing by -4k+6 undoes the multiplication by -4k+6.
x=\frac{y-3k+2}{2\left(3-2k\right)}
Divide y-3k+2 by -4k+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}