Solve for c_1
c_{1}=\frac{y+c_{2}e^{-x+\pi i+i}}{e^{x}}
Solve for c_2
c_{2}=ye^{x-i}-c_{1}e^{2x-i}
Quiz
Complex Number
5 problems similar to:
y = c _ { 1 } e ^ { x } + c _ { 2 } e ^ { - x } e ^ { i } ?
Share
Copied to clipboard
c_{1}e^{x}+c_{2}e^{-x}e^{i}=y
Swap sides so that all variable terms are on the left hand side.
c_{1}e^{x}=y-c_{2}e^{-x}e^{i}
Subtract c_{2}e^{-x}e^{i} from both sides.
c_{1}e^{x}=y-e^{i}c_{2}e^{-x}
Reorder the terms.
e^{x}c_{1}=y-c_{2}e^{-x+i}
The equation is in standard form.
\frac{e^{x}c_{1}}{e^{x}}=\frac{y-c_{2}e^{-x+i}}{e^{x}}
Divide both sides by e^{x}.
c_{1}=\frac{y-c_{2}e^{-x+i}}{e^{x}}
Dividing by e^{x} undoes the multiplication by e^{x}.
c_{1}e^{x}+c_{2}e^{-x}e^{i}=y
Swap sides so that all variable terms are on the left hand side.
c_{2}e^{-x}e^{i}=y-c_{1}e^{x}
Subtract c_{1}e^{x} from both sides.
e^{i}c_{2}e^{-x}=y-c_{1}e^{x}
Reorder the terms.
e^{i-x}c_{2}=y-c_{1}e^{x}
The equation is in standard form.
\frac{e^{i-x}c_{2}}{e^{i-x}}=\frac{y-c_{1}e^{x}}{e^{i-x}}
Divide both sides by e^{-x+i}.
c_{2}=\frac{y-c_{1}e^{x}}{e^{i-x}}
Dividing by e^{-x+i} undoes the multiplication by e^{-x+i}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}