Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{y\left(b-1\right)}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\left(b=1\text{ or }y=0\right)\text{ and }x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{y-ax^{2}}{y}\text{, }&y\neq 0\\b\in \mathrm{C}\text{, }&\left(a=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{y\left(b-1\right)}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&\left(b=1\text{ or }y=0\right)\text{ and }x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{y-ax^{2}}{y}\text{, }&y\neq 0\\b\in \mathrm{R}\text{, }&\left(a=0\text{ or }x=0\right)\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}+by=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}=y-by
Subtract by from both sides.
x^{2}a=y-by
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{y-by}{x^{2}}
Divide both sides by x^{2}.
a=\frac{y-by}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=\frac{y\left(1-b\right)}{x^{2}}
Divide y-yb by x^{2}.
ax^{2}+by=y
Swap sides so that all variable terms are on the left hand side.
by=y-ax^{2}
Subtract ax^{2} from both sides.
by=-ax^{2}+y
Reorder the terms.
yb=y-ax^{2}
The equation is in standard form.
\frac{yb}{y}=\frac{y-ax^{2}}{y}
Divide both sides by y.
b=\frac{y-ax^{2}}{y}
Dividing by y undoes the multiplication by y.
ax^{2}+by=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}=y-by
Subtract by from both sides.
x^{2}a=y-by
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{y-by}{x^{2}}
Divide both sides by x^{2}.
a=\frac{y-by}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=\frac{y\left(1-b\right)}{x^{2}}
Divide y-yb by x^{2}.
ax^{2}+by=y
Swap sides so that all variable terms are on the left hand side.
by=y-ax^{2}
Subtract ax^{2} from both sides.
by=-ax^{2}+y
Reorder the terms.
yb=y-ax^{2}
The equation is in standard form.
\frac{yb}{y}=\frac{y-ax^{2}}{y}
Divide both sides by y.
b=\frac{y-ax^{2}}{y}
Dividing by y undoes the multiplication by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}