Solve for t (complex solution)
\left\{\begin{matrix}t=1+\frac{y}{a^{2}}\text{, }&a\neq 0\\t\in \mathrm{C}\text{, }&y=0\text{ and }a=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=1+\frac{y}{a^{2}}\text{, }&a\neq 0\\t\in \mathrm{R}\text{, }&y=0\text{ and }a=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=-i\left(1-t\right)^{-\frac{1}{2}}\sqrt{y}\text{; }a=i\left(1-t\right)^{-\frac{1}{2}}\sqrt{y}\text{, }&t\neq 1\\a\in \mathrm{C}\text{, }&y=0\text{ and }t=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\sqrt{-\frac{y}{1-t}}\text{; }a=-\sqrt{-\frac{y}{1-t}}\text{, }&\left(y\leq 0\text{ and }t<1\right)\text{ or }\left(y\geq 0\text{ and }t>1\right)\\a\in \mathrm{R}\text{, }&y=0\text{ and }t=1\end{matrix}\right.
Graph
Share
Copied to clipboard
y=a^{2}t-a^{2}
Use the distributive property to multiply a^{2} by t-1.
a^{2}t-a^{2}=y
Swap sides so that all variable terms are on the left hand side.
a^{2}t=y+a^{2}
Add a^{2} to both sides.
\frac{a^{2}t}{a^{2}}=\frac{y+a^{2}}{a^{2}}
Divide both sides by a^{2}.
t=\frac{y+a^{2}}{a^{2}}
Dividing by a^{2} undoes the multiplication by a^{2}.
t=1+\frac{y}{a^{2}}
Divide y+a^{2} by a^{2}.
y=a^{2}t-a^{2}
Use the distributive property to multiply a^{2} by t-1.
a^{2}t-a^{2}=y
Swap sides so that all variable terms are on the left hand side.
a^{2}t=y+a^{2}
Add a^{2} to both sides.
\frac{a^{2}t}{a^{2}}=\frac{y+a^{2}}{a^{2}}
Divide both sides by a^{2}.
t=\frac{y+a^{2}}{a^{2}}
Dividing by a^{2} undoes the multiplication by a^{2}.
t=1+\frac{y}{a^{2}}
Divide y+a^{2} by a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}