Solve for X
\left\{\begin{matrix}X=-\frac{Y\cos(\theta )-y}{\sin(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}\\X\in \mathrm{R}\text{, }&y=Y\cos(\theta )\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}\end{matrix}\right.
Solve for Y
\left\{\begin{matrix}Y=-\frac{X\sin(\theta )-y}{\cos(\theta )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\Y\in \mathrm{R}\text{, }&y=X\sin(\theta )\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
Y\cos(\theta )+X\sin(\theta )=y
Swap sides so that all variable terms are on the left hand side.
X\sin(\theta )=y-Y\cos(\theta )
Subtract Y\cos(\theta ) from both sides.
\sin(\theta )X=-Y\cos(\theta )+y
The equation is in standard form.
\frac{\sin(\theta )X}{\sin(\theta )}=\frac{-Y\cos(\theta )+y}{\sin(\theta )}
Divide both sides by \sin(\theta ).
X=\frac{-Y\cos(\theta )+y}{\sin(\theta )}
Dividing by \sin(\theta ) undoes the multiplication by \sin(\theta ).
Y\cos(\theta )+X\sin(\theta )=y
Swap sides so that all variable terms are on the left hand side.
Y\cos(\theta )=y-X\sin(\theta )
Subtract X\sin(\theta ) from both sides.
\cos(\theta )Y=-X\sin(\theta )+y
The equation is in standard form.
\frac{\cos(\theta )Y}{\cos(\theta )}=\frac{-X\sin(\theta )+y}{\cos(\theta )}
Divide both sides by \cos(\theta ).
Y=\frac{-X\sin(\theta )+y}{\cos(\theta )}
Dividing by \cos(\theta ) undoes the multiplication by \cos(\theta ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}