Solve for A (complex solution)
\left\{\begin{matrix}A=-\frac{x}{e^{\lambda }}+\frac{y}{x}\text{, }&x\neq 0\\A\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=-\frac{x}{e^{\lambda }}+\frac{y}{x}\text{, }&x\neq 0\\A\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
x=\frac{-\sqrt{e^{\lambda }\left(4y+A^{2}e^{\lambda }\right)}-Ae^{\lambda }}{2}
x=\frac{\sqrt{e^{\lambda }\left(4y+A^{2}e^{\lambda }\right)}-Ae^{\lambda }}{2}
Solve for x
x=\frac{-e^{\frac{\lambda }{2}}\sqrt{4y+A^{2}e^{\lambda }}-Ae^{\lambda }}{2}
x=\frac{e^{\frac{\lambda }{2}}\sqrt{4y+A^{2}e^{\lambda }}-Ae^{\lambda }}{2}\text{, }y\geq -\frac{A^{2}e^{\lambda }}{4}
Graph
Share
Copied to clipboard
Ax+x^{2}e^{-\lambda }=y
Swap sides so that all variable terms are on the left hand side.
Ax=y-x^{2}e^{-\lambda }
Subtract x^{2}e^{-\lambda } from both sides.
Ax=-x^{2}e^{-\lambda }+y
Reorder the terms.
xA=-\frac{x^{2}}{e^{\lambda }}+y
The equation is in standard form.
\frac{xA}{x}=\frac{ye^{\lambda }-x^{2}}{e^{\lambda }x}
Divide both sides by x.
A=\frac{ye^{\lambda }-x^{2}}{e^{\lambda }x}
Dividing by x undoes the multiplication by x.
A=\frac{ye^{\lambda }-x^{2}}{xe^{\lambda }}
Divide \frac{ye^{\lambda }-x^{2}}{e^{\lambda }} by x.
Ax+x^{2}e^{-\lambda }=y
Swap sides so that all variable terms are on the left hand side.
Ax=y-x^{2}e^{-\lambda }
Subtract x^{2}e^{-\lambda } from both sides.
Ax=-x^{2}e^{-\lambda }+y
Reorder the terms.
xA=-\frac{x^{2}}{e^{\lambda }}+y
The equation is in standard form.
\frac{xA}{x}=\frac{ye^{\lambda }-x^{2}}{e^{\lambda }x}
Divide both sides by x.
A=\frac{ye^{\lambda }-x^{2}}{e^{\lambda }x}
Dividing by x undoes the multiplication by x.
A=\frac{ye^{\lambda }-x^{2}}{xe^{\lambda }}
Divide \frac{ye^{\lambda }-x^{2}}{e^{\lambda }} by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}