Solve for A
\left\{\begin{matrix}A=-\frac{B\sin(x)-y}{\cos(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\\A\in \mathrm{R}\text{, }&y=B\sin(x)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{A\cos(x)-y}{\sin(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\B\in \mathrm{R}\text{, }&y=A\cos(x)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
Graph
Share
Copied to clipboard
A\cos(x)+B\sin(x)=y
Swap sides so that all variable terms are on the left hand side.
A\cos(x)=y-B\sin(x)
Subtract B\sin(x) from both sides.
\cos(x)A=-B\sin(x)+y
The equation is in standard form.
\frac{\cos(x)A}{\cos(x)}=\frac{-B\sin(x)+y}{\cos(x)}
Divide both sides by \cos(x).
A=\frac{-B\sin(x)+y}{\cos(x)}
Dividing by \cos(x) undoes the multiplication by \cos(x).
A\cos(x)+B\sin(x)=y
Swap sides so that all variable terms are on the left hand side.
B\sin(x)=y-A\cos(x)
Subtract A\cos(x) from both sides.
\sin(x)B=-A\cos(x)+y
The equation is in standard form.
\frac{\sin(x)B}{\sin(x)}=\frac{-A\cos(x)+y}{\sin(x)}
Divide both sides by \sin(x).
B=\frac{-A\cos(x)+y}{\sin(x)}
Dividing by \sin(x) undoes the multiplication by \sin(x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}