Solve for x
x=\frac{1}{3}-\frac{3}{y}
y\neq 0
Solve for y
y=\frac{9}{1-3x}
x\neq \frac{1}{3}
Graph
Share
Copied to clipboard
3xy+9=y
Swap sides so that all variable terms are on the left hand side.
3xy=y-9
Subtract 9 from both sides.
3yx=y-9
The equation is in standard form.
\frac{3yx}{3y}=\frac{y-9}{3y}
Divide both sides by 3y.
x=\frac{y-9}{3y}
Dividing by 3y undoes the multiplication by 3y.
x=\frac{1}{3}-\frac{3}{y}
Divide y-9 by 3y.
y-3xy=9
Subtract 3xy from both sides.
\left(1-3x\right)y=9
Combine all terms containing y.
\frac{\left(1-3x\right)y}{1-3x}=\frac{9}{1-3x}
Divide both sides by 1-3x.
y=\frac{9}{1-3x}
Dividing by 1-3x undoes the multiplication by 1-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}