Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{y-3x}{3x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{y-3x}{3x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{3\left(4ay+3\right)}-3}{6a}\text{; }x=-\frac{\sqrt{3}\left(\sqrt{4ay+3}+\sqrt{3}\right)}{6a}\text{, }&a\neq 0\\x=\frac{y}{3}\text{, }&a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{3\left(4ay+3\right)}-3}{6a}\text{; }x=-\frac{\sqrt{3}\left(\sqrt{4ay+3}+\sqrt{3}\right)}{6a}\text{, }&\left(y\leq -\frac{3}{4a}\text{ and }a<0\right)\text{ or }\left(y\geq -\frac{3}{4a}\text{ and }a>0\right)\text{ or }\left(a\neq 0\text{ and }y=-\frac{3}{4a}\right)\\x=\frac{y}{3}\text{, }&a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=3ax^{2}+3x
Use the distributive property to multiply 3 by ax^{2}+x.
3ax^{2}+3x=y
Swap sides so that all variable terms are on the left hand side.
3ax^{2}=y-3x
Subtract 3x from both sides.
3x^{2}a=y-3x
The equation is in standard form.
\frac{3x^{2}a}{3x^{2}}=\frac{y-3x}{3x^{2}}
Divide both sides by 3x^{2}.
a=\frac{y-3x}{3x^{2}}
Dividing by 3x^{2} undoes the multiplication by 3x^{2}.
y=3ax^{2}+3x
Use the distributive property to multiply 3 by ax^{2}+x.
3ax^{2}+3x=y
Swap sides so that all variable terms are on the left hand side.
3ax^{2}=y-3x
Subtract 3x from both sides.
3x^{2}a=y-3x
The equation is in standard form.
\frac{3x^{2}a}{3x^{2}}=\frac{y-3x}{3x^{2}}
Divide both sides by 3x^{2}.
a=\frac{y-3x}{3x^{2}}
Dividing by 3x^{2} undoes the multiplication by 3x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}