Solve for x
x=-3+\frac{69}{y}
y\neq 0
Solve for y
y=\frac{69}{x+3}
x\neq -3
Graph
Share
Copied to clipboard
y=23-\frac{xy}{3}
Express \frac{x}{3}y as a single fraction.
23-\frac{xy}{3}=y
Swap sides so that all variable terms are on the left hand side.
-\frac{xy}{3}=y-23
Subtract 23 from both sides.
-xy=3y-69
Multiply both sides of the equation by 3.
\left(-y\right)x=3y-69
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{3y-69}{-y}
Divide both sides by -y.
x=\frac{3y-69}{-y}
Dividing by -y undoes the multiplication by -y.
x=-3+\frac{69}{y}
Divide -69+3y by -y.
y=23-\frac{xy}{3}
Express \frac{x}{3}y as a single fraction.
y+\frac{xy}{3}=23
Add \frac{xy}{3} to both sides.
3y+xy=69
Multiply both sides of the equation by 3.
\left(3+x\right)y=69
Combine all terms containing y.
\left(x+3\right)y=69
The equation is in standard form.
\frac{\left(x+3\right)y}{x+3}=\frac{69}{x+3}
Divide both sides by x+3.
y=\frac{69}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}