Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\left(\left(-x\right)x-2\left(-x\right)\right)\left(x-3\right)\left(x-9\right)\left(x+6\right)
Use the distributive property to multiply -x by x-2.
y=\left(\left(-x\right)x+2x\right)\left(x-3\right)\left(x-9\right)\left(x+6\right)
Multiply -2 and -1 to get 2.
y=\left(\left(-x\right)x^{2}-3\left(-x\right)x+2x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Use the distributive property to multiply \left(-x\right)x+2x by x-3.
y=\left(\left(-x\right)x^{2}+3xx+2x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Multiply -3 and -1 to get 3.
y=\left(\left(-x\right)x^{2}+3x^{2}+2x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Multiply x and x to get x^{2}.
y=\left(\left(-x\right)x^{2}+5x^{2}-6x\right)\left(x-9\right)\left(x+6\right)
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
y=\left(\left(-x\right)x^{3}-9\left(-x\right)x^{2}+5x^{3}-51x^{2}+54x\right)\left(x+6\right)
Use the distributive property to multiply \left(-x\right)x^{2}+5x^{2}-6x by x-9 and combine like terms.
y=\left(\left(-x\right)x^{3}+9xx^{2}+5x^{3}-51x^{2}+54x\right)\left(x+6\right)
Multiply -9 and -1 to get 9.
y=\left(\left(-x\right)x^{3}+9x^{3}+5x^{3}-51x^{2}+54x\right)\left(x+6\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
y=\left(\left(-x\right)x^{3}+14x^{3}-51x^{2}+54x\right)\left(x+6\right)
Combine 9x^{3} and 5x^{3} to get 14x^{3}.
y=\left(-x\right)x^{4}+6\left(-x\right)x^{3}+14x^{4}+33x^{3}-252x^{2}+324x
Use the distributive property to multiply \left(-x\right)x^{3}+14x^{3}-51x^{2}+54x by x+6 and combine like terms.
y=-x^{5}+6\left(-1\right)xx^{3}+14x^{4}+33x^{3}-252x^{2}+324x
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
y=-x^{5}+6\left(-1\right)x^{4}+14x^{4}+33x^{3}-252x^{2}+324x
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
y=-x^{5}-6x^{4}+14x^{4}+33x^{3}-252x^{2}+324x
Multiply 6 and -1 to get -6.
y=-x^{5}+8x^{4}+33x^{3}-252x^{2}+324x
Combine -6x^{4} and 14x^{4} to get 8x^{4}.