Solve for r
\left\{\begin{matrix}r=\frac{2\pi n_{1}i}{\ln(x)}+\log_{x}\left(\frac{iy}{4}\right)-1\text{, }n_{1}\in \mathrm{Z}\text{, }&x\neq 1\text{ and }x\neq 0\text{ and }y\neq 0\\r\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(x=1\text{ and }y=-4i\right)\end{matrix}\right.
Solve for x
x=4^{\frac{-Re(r)-1+iIm(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+2Re(r)+1}}\left(|y|\right)^{\frac{Re(r)\left(Im(r)\right)^{2}-iIm(r)\left(Re(r)\right)^{2}+\left(Re(r)\right)^{3}-i\left(Im(r)\right)^{3}-2iRe(r)Im(r)+3\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+3Re(r)-iIm(r)+1}{\left(\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+2Re(r)+1\right)^{2}}}e^{\frac{Im(r)arg(\frac{iy}{4})+iRe(r)arg(\frac{iy}{4})+iarg(\frac{iy}{4})}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+2Re(r)+1}-\frac{2\pi n_{1}iRe(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+2Re(r)+1}-\frac{2\pi n_{1}Im(r)}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+2Re(r)+1}-\frac{2\pi n_{1}i}{\left(Re(r)\right)^{2}+\left(Im(r)\right)^{2}+2Re(r)+1}}
n_{1}\in \mathrm{Z}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}