Solve for x
\left\{\begin{matrix}x=-\frac{y\tan(en)}{\theta }\text{, }&\nexists n_{3}\in \mathrm{Z}\text{ : }n=\frac{\pi n_{3}}{2e}\text{ and }\theta \neq 0\\x\in \mathrm{R}\text{, }&\left(y=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }n=\frac{\pi n_{1}}{e}\text{ and }\theta =0\right)\text{ or }\left(y=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }n=\frac{\pi n_{2}}{e}+\frac{\pi }{2e}\right)\end{matrix}\right.
Solve for n
n\neq \frac{\pi n_{1}}{e}
\forall n_{1}\in \mathrm{Z}
\left(\theta =0\text{ or }x=0\right)\text{ and }y=0
Graph
Share
Copied to clipboard
\left(-\cot(en)\right)\theta x=y
Swap sides so that all variable terms are on the left hand side.
\left(-\theta \cot(en)\right)x=y
The equation is in standard form.
\frac{\left(-\theta \cot(en)\right)x}{-\theta \cot(en)}=\frac{y}{-\theta \cot(en)}
Divide both sides by -\cot(en)\theta .
x=\frac{y}{-\theta \cot(en)}
Dividing by -\cot(en)\theta undoes the multiplication by -\cot(en)\theta .
x=-\frac{y\tan(en)}{\theta }
Divide y by -\cot(en)\theta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}