Solve for m (complex solution)
\left\{\begin{matrix}m=-\left(3-y\right)x^{1-n}+2\text{, }&n=1\text{ or }x\neq 0\\m\in \mathrm{C}\text{, }&y=3\text{ and }x=0\text{ and }n\neq 1\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-\left(3-y\right)x^{1-n}+2\text{, }&\left(x<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }x>0\\m\in \mathrm{R}\text{, }&y=3\text{ and }x=0\text{ and }n>1\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{\ln(x)+\ln(\frac{y-3}{m-2})}{\ln(x)}+\frac{2\pi n_{1}i}{\ln(x)}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 3\text{ and }x\neq 1\text{ and }x\neq 0\text{ and }m\neq 2\\n\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=3\text{ and }m\neq 2\right)\text{ or }\left(x=1\text{ and }m=y-1\text{ and }y\neq 3\right)\text{ or }\left(y=3\text{ and }m=2\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{\ln(x)+\ln(\frac{y-3}{m-2})}{\ln(x)}\text{, }&\left(y<3\text{ and }m<2\text{ and }x\neq 1\text{ and }x>0\right)\text{ or }\left(y>3\text{ and }m>2\text{ and }x\neq 1\text{ and }x>0\right)\\n\in \mathrm{R}\text{, }&\left(m=y-1\text{ and }y\neq 3\text{ and }x=1\right)\text{ or }\left(y=3\text{ and }m=2\text{ and }x>0\right)\text{ or }\left(m=5-y\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n-1)\text{bmod}2=1\text{ and }y\neq 3\text{ and }x=-1\right)\text{ or }\left(y=3\text{ and }m=2\text{ and }x<0\text{ and }Denominator(n)\text{bmod}2=1\right)\\n>1\text{, }&x=0\text{ and }y=3\end{matrix}\right.
Graph
Share
Copied to clipboard
y=mx^{n-1}-2x^{n-1}+3
Use the distributive property to multiply m-2 by x^{n-1}.
mx^{n-1}-2x^{n-1}+3=y
Swap sides so that all variable terms are on the left hand side.
mx^{n-1}+3=y+2x^{n-1}
Add 2x^{n-1} to both sides.
mx^{n-1}=y+2x^{n-1}-3
Subtract 3 from both sides.
x^{n-1}m=2x^{n-1}+y-3
The equation is in standard form.
\frac{x^{n-1}m}{x^{n-1}}=\frac{2x^{n-1}+y-3}{x^{n-1}}
Divide both sides by x^{n-1}.
m=\frac{2x^{n-1}+y-3}{x^{n-1}}
Dividing by x^{n-1} undoes the multiplication by x^{n-1}.
m=x^{1-n}\left(\frac{2}{x^{1-n}}+y-3\right)
Divide y+2x^{n-1}-3 by x^{n-1}.
y=mx^{n-1}-2x^{n-1}+3
Use the distributive property to multiply m-2 by x^{n-1}.
mx^{n-1}-2x^{n-1}+3=y
Swap sides so that all variable terms are on the left hand side.
mx^{n-1}+3=y+2x^{n-1}
Add 2x^{n-1} to both sides.
mx^{n-1}=y+2x^{n-1}-3
Subtract 3 from both sides.
x^{n-1}m=2x^{n-1}+y-3
The equation is in standard form.
\frac{x^{n-1}m}{x^{n-1}}=\frac{2x^{n-1}+y-3}{x^{n-1}}
Divide both sides by x^{n-1}.
m=\frac{2x^{n-1}+y-3}{x^{n-1}}
Dividing by x^{n-1} undoes the multiplication by x^{n-1}.
m=x^{1-n}\left(\frac{2}{x^{1-n}}+y-3\right)
Divide y+2x^{n-1}-3 by x^{n-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}