Solve for c_1
c_{1}=ye^{\frac{x}{2}}-c_{2}x
Solve for c_2
\left\{\begin{matrix}c_{2}=-\frac{c_{1}-ye^{\frac{x}{2}}}{x}\text{, }&x\neq 0\\c_{2}\in \mathrm{R}\text{, }&y=c_{1}\text{ and }x=0\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
y = ( c _ { 1 } + c _ { 2 } x ) e ^ { - \frac { 1 } { 2 } x }
Share
Copied to clipboard
y=c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}
Use the distributive property to multiply c_{1}+c_{2}x by e^{-\frac{1}{2}x}.
c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}=y
Swap sides so that all variable terms are on the left hand side.
c_{1}e^{-\frac{1}{2}x}=y-c_{2}xe^{-\frac{1}{2}x}
Subtract c_{2}xe^{-\frac{1}{2}x} from both sides.
c_{1}e^{-\frac{1}{2}x}=-c_{2}xe^{-\frac{1}{2}x}+y
Reorder the terms.
e^{-\frac{x}{2}}c_{1}=y-c_{2}xe^{-\frac{x}{2}}
The equation is in standard form.
\frac{e^{-\frac{x}{2}}c_{1}}{e^{-\frac{x}{2}}}=\frac{y-c_{2}xe^{-\frac{x}{2}}}{e^{-\frac{x}{2}}}
Divide both sides by e^{-\frac{1}{2}x}.
c_{1}=\frac{y-c_{2}xe^{-\frac{x}{2}}}{e^{-\frac{x}{2}}}
Dividing by e^{-\frac{1}{2}x} undoes the multiplication by e^{-\frac{1}{2}x}.
c_{1}=ye^{\frac{x}{2}}-c_{2}x
Divide y-e^{-\frac{x}{2}}c_{2}x by e^{-\frac{1}{2}x}.
y=c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}
Use the distributive property to multiply c_{1}+c_{2}x by e^{-\frac{1}{2}x}.
c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}=y
Swap sides so that all variable terms are on the left hand side.
c_{2}xe^{-\frac{1}{2}x}=y-c_{1}e^{-\frac{1}{2}x}
Subtract c_{1}e^{-\frac{1}{2}x} from both sides.
xe^{-\frac{x}{2}}c_{2}=y-c_{1}e^{-\frac{x}{2}}
The equation is in standard form.
\frac{xe^{-\frac{x}{2}}c_{2}}{xe^{-\frac{x}{2}}}=\frac{y-c_{1}e^{-\frac{x}{2}}}{xe^{-\frac{x}{2}}}
Divide both sides by xe^{-\frac{1}{2}x}.
c_{2}=\frac{y-c_{1}e^{-\frac{x}{2}}}{xe^{-\frac{x}{2}}}
Dividing by xe^{-\frac{1}{2}x} undoes the multiplication by xe^{-\frac{1}{2}x}.
c_{2}=\frac{ye^{\frac{x}{2}}-c_{1}}{x}
Divide y-e^{-\frac{x}{2}}c_{1} by xe^{-\frac{1}{2}x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}