Skip to main content
Solve for c_1
Tick mark Image
Solve for c_2
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}
Use the distributive property to multiply c_{1}+c_{2}x by e^{-\frac{1}{2}x}.
c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}=y
Swap sides so that all variable terms are on the left hand side.
c_{1}e^{-\frac{1}{2}x}=y-c_{2}xe^{-\frac{1}{2}x}
Subtract c_{2}xe^{-\frac{1}{2}x} from both sides.
c_{1}e^{-\frac{1}{2}x}=-c_{2}xe^{-\frac{1}{2}x}+y
Reorder the terms.
e^{-\frac{x}{2}}c_{1}=y-c_{2}xe^{-\frac{x}{2}}
The equation is in standard form.
\frac{e^{-\frac{x}{2}}c_{1}}{e^{-\frac{x}{2}}}=\frac{y-c_{2}xe^{-\frac{x}{2}}}{e^{-\frac{x}{2}}}
Divide both sides by e^{-\frac{1}{2}x}.
c_{1}=\frac{y-c_{2}xe^{-\frac{x}{2}}}{e^{-\frac{x}{2}}}
Dividing by e^{-\frac{1}{2}x} undoes the multiplication by e^{-\frac{1}{2}x}.
c_{1}=ye^{\frac{x}{2}}-c_{2}x
Divide y-e^{-\frac{x}{2}}c_{2}x by e^{-\frac{1}{2}x}.
y=c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}
Use the distributive property to multiply c_{1}+c_{2}x by e^{-\frac{1}{2}x}.
c_{1}e^{-\frac{1}{2}x}+c_{2}xe^{-\frac{1}{2}x}=y
Swap sides so that all variable terms are on the left hand side.
c_{2}xe^{-\frac{1}{2}x}=y-c_{1}e^{-\frac{1}{2}x}
Subtract c_{1}e^{-\frac{1}{2}x} from both sides.
xe^{-\frac{x}{2}}c_{2}=y-c_{1}e^{-\frac{x}{2}}
The equation is in standard form.
\frac{xe^{-\frac{x}{2}}c_{2}}{xe^{-\frac{x}{2}}}=\frac{y-c_{1}e^{-\frac{x}{2}}}{xe^{-\frac{x}{2}}}
Divide both sides by xe^{-\frac{1}{2}x}.
c_{2}=\frac{y-c_{1}e^{-\frac{x}{2}}}{xe^{-\frac{x}{2}}}
Dividing by xe^{-\frac{1}{2}x} undoes the multiplication by xe^{-\frac{1}{2}x}.
c_{2}=\frac{ye^{\frac{x}{2}}-c_{1}}{x}
Divide y-e^{-\frac{x}{2}}c_{1} by xe^{-\frac{1}{2}x}.