Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{\ln(y-x^{\log(x)})}{\ln(\ln(y))-\ln(\ln(10))}+\frac{2i\pi n_{1}}{\ln(\ln(y))-\ln(\ln(10))}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq x^{\log(x)}\text{ and }x\neq 0\text{ and }y\neq 10\text{ and }y\neq 1\text{ and }y\neq 0\\a\in \mathrm{C}\text{, }&\left(y=1\text{ and }x=1\right)\text{ or }\left(y=1\text{ and }x=-1\text{ and }Numerator(\pi i\log(e))\text{bmod}2=0\right)\text{ or }\left(y=10\text{ and }x^{\log(x)}=9\text{ and }x\neq 0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{\ln(y-x^{\log(x)})}{\ln(\ln(y))-\ln(\ln(10))}\text{, }&x>0\text{ and }y\neq 10\text{ and }y>1\text{ and }y>x^{\log(x)}\\a\in \mathrm{R}\text{, }&\left(y=10\text{ and }x^{\log(x)}=9\text{ and }x>0\right)\text{ or }\left(y=\frac{1}{10}\text{ and }x^{\log(x)}=\frac{11}{10}\text{ and }x>0\text{ and }Denominator(a)\text{bmod}2=1\text{ and }Numerator(a)\text{bmod}2=1\right)\\a>0\text{, }&x=1\text{ and }y=1\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}