Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{m+1}{2m-3}\right)^{x}k=y
Swap sides so that all variable terms are on the left hand side.
\frac{\left(\frac{m+1}{2m-3}\right)^{x}k}{\left(\frac{m+1}{2m-3}\right)^{x}}=\frac{y}{\left(\frac{m+1}{2m-3}\right)^{x}}
Divide both sides by \left(\left(m+1\right)\left(2m-3\right)^{-1}\right)^{x}.
k=\frac{y}{\left(\frac{m+1}{2m-3}\right)^{x}}
Dividing by \left(\left(m+1\right)\left(2m-3\right)^{-1}\right)^{x} undoes the multiplication by \left(\left(m+1\right)\left(2m-3\right)^{-1}\right)^{x}.
\left(\frac{m+1}{2m-3}\right)^{x}k=y
Swap sides so that all variable terms are on the left hand side.
\frac{\left(\frac{m+1}{2m-3}\right)^{x}k}{\left(\frac{m+1}{2m-3}\right)^{x}}=\frac{y}{\left(\frac{m+1}{2m-3}\right)^{x}}
Divide both sides by \left(\left(m+1\right)\left(2m-3\right)^{-1}\right)^{x}.
k=\frac{y}{\left(\frac{m+1}{2m-3}\right)^{x}}
Dividing by \left(\left(m+1\right)\left(2m-3\right)^{-1}\right)^{x} undoes the multiplication by \left(\left(m+1\right)\left(2m-3\right)^{-1}\right)^{x}.