y = \sqrt[ 3 ] { x } d x + 2
Solve for d (complex solution)
\left\{\begin{matrix}d=-x^{-\frac{4}{3}}\left(2-y\right)\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&y=2\text{ and }x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{2-y}{x^{\frac{4}{3}}}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&y=2\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\sqrt{2}\left(-\frac{1}{2}+\frac{1}{2}i\right)d^{-\frac{3}{4}}\left(2-y\right)^{\frac{3}{4}}\text{; }x=\sqrt{2}\left(\frac{1}{2}+\frac{1}{2}i\right)d^{-\frac{3}{4}}\left(2-y\right)^{\frac{3}{4}}\text{; }x=\sqrt{2}\left(-\frac{1}{2}-\frac{1}{2}i\right)d^{-\frac{3}{4}}\left(2-y\right)^{\frac{3}{4}}\text{; }x=\sqrt{2}\left(\frac{1}{2}-\frac{1}{2}i\right)d^{-\frac{3}{4}}\left(2-y\right)^{\frac{3}{4}}\text{, }&\left(y=2\text{ or }arg(-\frac{2-y}{d})<\frac{2\pi }{3}\right)\text{ and }d\neq 0\\x\in \mathrm{C}\text{, }&y=2\text{ and }d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\sqrt[4]{-\left(\frac{2-y}{d}\right)^{3}}\text{; }x=-\sqrt[4]{-\left(\frac{2-y}{d}\right)^{3}}\text{, }&\left(y\leq 2\text{ and }d<0\right)\text{ or }\left(y\geq 2\text{ and }d>0\right)\\x\in \mathrm{R}\text{, }&y=2\text{ and }d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\sqrt[3]{x}dx+2=y
Swap sides so that all variable terms are on the left hand side.
\sqrt[3]{x}dx=y-2
Subtract 2 from both sides.
\sqrt[3]{x}xd=y-2
The equation is in standard form.
\frac{\sqrt[3]{x}xd}{\sqrt[3]{x}x}=\frac{y-2}{\sqrt[3]{x}x}
Divide both sides by \sqrt[3]{x}x.
d=\frac{y-2}{\sqrt[3]{x}x}
Dividing by \sqrt[3]{x}x undoes the multiplication by \sqrt[3]{x}x.
d=x^{-\frac{4}{3}}\left(y-2\right)
Divide y-2 by \sqrt[3]{x}x.
\sqrt[3]{x}dx+2=y
Swap sides so that all variable terms are on the left hand side.
\sqrt[3]{x}dx=y-2
Subtract 2 from both sides.
\sqrt[3]{x}xd=y-2
The equation is in standard form.
\frac{\sqrt[3]{x}xd}{\sqrt[3]{x}x}=\frac{y-2}{\sqrt[3]{x}x}
Divide both sides by \sqrt[3]{x}x.
d=\frac{y-2}{\sqrt[3]{x}x}
Dividing by \sqrt[3]{x}x undoes the multiplication by \sqrt[3]{x}x.
d=\frac{y-2}{x^{\frac{4}{3}}}
Divide y-2 by \sqrt[3]{x}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}