Solve for r
r=\frac{-\sqrt{2}y+6}{4e}
Solve for y
y=-\sqrt{2}\left(2er-3\right)
Graph
Share
Copied to clipboard
y=7\sqrt{2}-\sqrt{32}-\sqrt{8}er
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
y=7\sqrt{2}-4\sqrt{2}-\sqrt{8}er
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
y=3\sqrt{2}-\sqrt{8}er
Combine 7\sqrt{2} and -4\sqrt{2} to get 3\sqrt{2}.
y=3\sqrt{2}-2\sqrt{2}er
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3\sqrt{2}-2\sqrt{2}er=y
Swap sides so that all variable terms are on the left hand side.
-2\sqrt{2}er=y-3\sqrt{2}
Subtract 3\sqrt{2} from both sides.
\left(-2e\sqrt{2}\right)r=y-3\sqrt{2}
The equation is in standard form.
\frac{\left(-2e\sqrt{2}\right)r}{-2e\sqrt{2}}=\frac{y-3\sqrt{2}}{-2e\sqrt{2}}
Divide both sides by -2\sqrt{2}e.
r=\frac{y-3\sqrt{2}}{-2e\sqrt{2}}
Dividing by -2\sqrt{2}e undoes the multiplication by -2\sqrt{2}e.
r=\frac{-\frac{\sqrt{2}y}{4}+\frac{3}{2}}{e}
Divide y-3\sqrt{2} by -2\sqrt{2}e.
y=7\sqrt{2}-\sqrt{32}-\sqrt{8}er
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
y=7\sqrt{2}-4\sqrt{2}-\sqrt{8}er
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
y=3\sqrt{2}-\sqrt{8}er
Combine 7\sqrt{2} and -4\sqrt{2} to get 3\sqrt{2}.
y=3\sqrt{2}-2\sqrt{2}er
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}