Solve for a
a=-\frac{5}{6gty}
t\neq 0\text{ and }g\neq 0\text{ and }y\neq 0
Solve for g
g=-\frac{5}{6aty}
t\neq 0\text{ and }a\neq 0\text{ and }y\neq 0
Graph
Quiz
Linear Equation
5 problems similar to:
y = \operatorname { tag } ^ { - 1 } ( \frac { 5 } { - 6 } )
Share
Copied to clipboard
y=t^{-1}a^{-1}g^{-1}\times \frac{5}{-6}
Expand \left(tag\right)^{-1}.
y=t^{-1}a^{-1}g^{-1}\left(-\frac{5}{6}\right)
Fraction \frac{5}{-6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
t^{-1}a^{-1}g^{-1}\left(-\frac{5}{6}\right)=y
Swap sides so that all variable terms are on the left hand side.
-\frac{5}{6}\times \frac{1}{a}\times \frac{1}{g}\times \frac{1}{t}=y
Reorder the terms.
-\frac{5}{6}\times 6gt\times \frac{1}{g}\times \frac{1}{t}=y\times 6agt
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6agt, the least common multiple of 6,a,g,t.
-5gt\times \frac{1}{g}\times \frac{1}{t}=y\times 6agt
Multiply -\frac{5}{6} and 6 to get -5.
\frac{-5}{g}gt\times \frac{1}{t}=y\times 6agt
Express -5\times \frac{1}{g} as a single fraction.
\frac{-5}{gt}gt=y\times 6agt
Multiply \frac{-5}{g} times \frac{1}{t} by multiplying numerator times numerator and denominator times denominator.
\frac{-5g}{gt}t=y\times 6agt
Express \frac{-5}{gt}g as a single fraction.
\frac{-5}{t}t=y\times 6agt
Cancel out g in both numerator and denominator.
\frac{-5t}{t}=y\times 6agt
Express \frac{-5}{t}t as a single fraction.
-5=y\times 6agt
Cancel out t in both numerator and denominator.
y\times 6agt=-5
Swap sides so that all variable terms are on the left hand side.
6gtya=-5
The equation is in standard form.
\frac{6gtya}{6gty}=-\frac{5}{6gty}
Divide both sides by 6ygt.
a=-\frac{5}{6gty}
Dividing by 6ygt undoes the multiplication by 6ygt.
a=-\frac{5}{6gty}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}