Solve for r
\left\{\begin{matrix}r=\frac{x^{2}+y}{2y}\text{, }&x\neq 0\text{ and }y\neq 0\\r\neq \frac{1}{2}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
x=-\sqrt{y\left(2r-1\right)}
x=\sqrt{y\left(2r-1\right)}\text{, }r\neq \frac{1}{2}
Solve for x
x=\sqrt{y\left(2r-1\right)}
x=-\sqrt{y\left(2r-1\right)}\text{, }\left(y\geq 0\text{ and }r>\frac{1}{2}\right)\text{ or }\left(y\leq 0\text{ and }r<\frac{1}{2}\right)
Graph
Share
Copied to clipboard
y\left(2r-1\right)=x^{2}
Variable r cannot be equal to \frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2r-1.
2yr-y=x^{2}
Use the distributive property to multiply y by 2r-1.
2yr=x^{2}+y
Add y to both sides.
\frac{2yr}{2y}=\frac{x^{2}+y}{2y}
Divide both sides by 2y.
r=\frac{x^{2}+y}{2y}
Dividing by 2y undoes the multiplication by 2y.
r=\frac{x^{2}+y}{2y}\text{, }r\neq \frac{1}{2}
Variable r cannot be equal to \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}