Solve for G (complex solution)
\left\{\begin{matrix}G=\frac{yR^{2}}{Mm}\text{, }&m\neq 0\text{ and }M\neq 0\text{ and }R\neq 0\\G\in \mathrm{C}\text{, }&\left(m=0\text{ or }M=0\right)\text{ and }y=0\text{ and }R\neq 0\end{matrix}\right.
Solve for M (complex solution)
\left\{\begin{matrix}M=\frac{yR^{2}}{Gm}\text{, }&m\neq 0\text{ and }G\neq 0\text{ and }R\neq 0\\M\in \mathrm{C}\text{, }&\left(m=0\text{ or }G=0\right)\text{ and }y=0\text{ and }R\neq 0\end{matrix}\right.
Solve for G
\left\{\begin{matrix}G=\frac{yR^{2}}{Mm}\text{, }&m\neq 0\text{ and }M\neq 0\text{ and }R\neq 0\\G\in \mathrm{R}\text{, }&\left(m=0\text{ or }M=0\right)\text{ and }y=0\text{ and }R\neq 0\end{matrix}\right.
Solve for M
\left\{\begin{matrix}M=\frac{yR^{2}}{Gm}\text{, }&m\neq 0\text{ and }G\neq 0\text{ and }R\neq 0\\M\in \mathrm{R}\text{, }&\left(m=0\text{ or }G=0\right)\text{ and }y=0\text{ and }R\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
yR^{2}=GMm
Multiply both sides of the equation by R^{2}.
GMm=yR^{2}
Swap sides so that all variable terms are on the left hand side.
MmG=yR^{2}
The equation is in standard form.
\frac{MmG}{Mm}=\frac{yR^{2}}{Mm}
Divide both sides by Mm.
G=\frac{yR^{2}}{Mm}
Dividing by Mm undoes the multiplication by Mm.
yR^{2}=GMm
Multiply both sides of the equation by R^{2}.
GMm=yR^{2}
Swap sides so that all variable terms are on the left hand side.
GmM=yR^{2}
The equation is in standard form.
\frac{GmM}{Gm}=\frac{yR^{2}}{Gm}
Divide both sides by Gm.
M=\frac{yR^{2}}{Gm}
Dividing by Gm undoes the multiplication by Gm.
yR^{2}=GMm
Multiply both sides of the equation by R^{2}.
GMm=yR^{2}
Swap sides so that all variable terms are on the left hand side.
MmG=yR^{2}
The equation is in standard form.
\frac{MmG}{Mm}=\frac{yR^{2}}{Mm}
Divide both sides by Mm.
G=\frac{yR^{2}}{Mm}
Dividing by Mm undoes the multiplication by Mm.
yR^{2}=GMm
Multiply both sides of the equation by R^{2}.
GMm=yR^{2}
Swap sides so that all variable terms are on the left hand side.
GmM=yR^{2}
The equation is in standard form.
\frac{GmM}{Gm}=\frac{yR^{2}}{Gm}
Divide both sides by Gm.
M=\frac{yR^{2}}{Gm}
Dividing by Gm undoes the multiplication by Gm.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}