Solve for a
a=\frac{26y+33}{6y+7}
y\neq -\frac{7}{6}
Solve for y
y=-\frac{33-7a}{2\left(13-3a\right)}
a\neq \frac{13}{3}
Graph
Share
Copied to clipboard
y\times 2\left(-3a+13\right)=7\left(a-4\right)-5
Variable a cannot be equal to \frac{13}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(-3a+13\right).
-6ay+13y\times 2=7\left(a-4\right)-5
Use the distributive property to multiply y\times 2 by -3a+13.
-6ay+26y=7\left(a-4\right)-5
Multiply 13 and 2 to get 26.
-6ay+26y=7a-28-5
Use the distributive property to multiply 7 by a-4.
-6ay+26y=7a-33
Subtract 5 from -28 to get -33.
-6ay+26y-7a=-33
Subtract 7a from both sides.
-6ay-7a=-33-26y
Subtract 26y from both sides.
\left(-6y-7\right)a=-33-26y
Combine all terms containing a.
\left(-6y-7\right)a=-26y-33
The equation is in standard form.
\frac{\left(-6y-7\right)a}{-6y-7}=\frac{-26y-33}{-6y-7}
Divide both sides by -6y-7.
a=\frac{-26y-33}{-6y-7}
Dividing by -6y-7 undoes the multiplication by -6y-7.
a=\frac{26y+33}{6y+7}
Divide -26y-33 by -6y-7.
a=\frac{26y+33}{6y+7}\text{, }a\neq \frac{13}{3}
Variable a cannot be equal to \frac{13}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}