Solve for y, x
x=-2
y = \frac{27}{20} = 1\frac{7}{20} = 1.35
Graph
Share
Copied to clipboard
y=\frac{4\left(-2\right)^{3}-2\left(-2\right)+1}{9\left(-2\right)-2}
Consider the first equation. Insert the known values of variables into the equation.
y=\frac{4\left(-8\right)-2\left(-2\right)+1}{9\left(-2\right)-2}
Calculate -2 to the power of 3 and get -8.
y=\frac{-32-2\left(-2\right)+1}{9\left(-2\right)-2}
Multiply 4 and -8 to get -32.
y=\frac{-32+4+1}{9\left(-2\right)-2}
Multiply -2 and -2 to get 4.
y=\frac{-28+1}{9\left(-2\right)-2}
Add -32 and 4 to get -28.
y=\frac{-27}{9\left(-2\right)-2}
Add -28 and 1 to get -27.
y=\frac{-27}{-18-2}
Multiply 9 and -2 to get -18.
y=\frac{-27}{-20}
Subtract 2 from -18 to get -20.
y=\frac{27}{20}
Fraction \frac{-27}{-20} can be simplified to \frac{27}{20} by removing the negative sign from both the numerator and the denominator.
y=\frac{27}{20} x=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}