Solve for x
x=-\frac{2\left(3y-2\right)}{5-7y}
y\neq \frac{5}{7}
Solve for y
y=-\frac{5x-4}{6-7x}
x\neq \frac{6}{7}
Graph
Share
Copied to clipboard
y\left(-7x+6\right)=4-5x
Variable x cannot be equal to \frac{6}{7} since division by zero is not defined. Multiply both sides of the equation by -7x+6.
-7yx+6y=4-5x
Use the distributive property to multiply y by -7x+6.
-7yx+6y+5x=4
Add 5x to both sides.
-7yx+5x=4-6y
Subtract 6y from both sides.
\left(-7y+5\right)x=4-6y
Combine all terms containing x.
\left(5-7y\right)x=4-6y
The equation is in standard form.
\frac{\left(5-7y\right)x}{5-7y}=\frac{4-6y}{5-7y}
Divide both sides by -7y+5.
x=\frac{4-6y}{5-7y}
Dividing by -7y+5 undoes the multiplication by -7y+5.
x=\frac{2\left(2-3y\right)}{5-7y}
Divide 4-6y by -7y+5.
x=\frac{2\left(2-3y\right)}{5-7y}\text{, }x\neq \frac{6}{7}
Variable x cannot be equal to \frac{6}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}