Solve for a
\left\{\begin{matrix}a=\frac{\left(\frac{4y}{x}-3\right)^{2}}{16}\text{, }&x\neq 0\text{ and }-\frac{3x}{4}+y\geq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{\left(\frac{4y}{x}-3\right)^{2}}{16}\text{, }&x\neq 0\text{ and }\left(y=\frac{3x}{4}\text{ or }arg(-\frac{3x}{4}+y)<\pi \right)\\a\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{4\left(4\sqrt{ay^{2}}-3y\right)}{16a-9}\text{; }x=-\frac{4\left(4\sqrt{ay^{2}}+3y\right)}{16a-9}\text{, }&a\neq \frac{9}{16}\text{ and }arg(-\frac{3x}{4}+y)<\pi \\x=\frac{2y}{3}\text{, }&a=\frac{9}{16}\text{ and }y\neq 0\text{ and }arg(-\frac{3x}{4}+y)<\pi \\x\in \mathrm{C}\text{, }&a=\frac{9}{16}\text{ and }y=0\text{ and }arg(x)\geq \pi \\x=\frac{4y}{3}\text{, }&y=0\text{ or }a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{4y}{4\sqrt{a}-3}\text{, }&\left(a<\frac{9}{16}\text{ or }y\geq 0\right)\text{ and }\left(a=0\text{ or }a>\frac{9}{16}\text{ or }y\leq 0\right)\text{ and }a\geq 0\text{ and }a\neq \frac{9}{16}\\x=\frac{4y}{4\sqrt{a}+3}\text{, }&a=0\text{ or }\left(y\geq 0\text{ and }a\geq 0\text{ and }a\neq \frac{9}{16}\right)\\x=\frac{2y}{3}\text{, }&y=0\text{ or }\left(a=\frac{9}{16}\text{ and }y>0\right)\\x\leq 0\text{, }&a=\frac{9}{16}\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{3x}{4}+\sqrt{ax^{2}}=y
Swap sides so that all variable terms are on the left hand side.
\sqrt{ax^{2}}=y-\frac{3x}{4}
Subtract \frac{3x}{4} from both sides.
4\sqrt{ax^{2}}=4y-3x
Multiply both sides of the equation by 4.
\frac{4\sqrt{x^{2}a}}{4}=\frac{4y-3x}{4}
Divide both sides by 4.
\sqrt{x^{2}a}=\frac{4y-3x}{4}
Dividing by 4 undoes the multiplication by 4.
\sqrt{x^{2}a}=-\frac{3x}{4}+y
Divide 4y-3x by 4.
x^{2}a=\frac{\left(4y-3x\right)^{2}}{16}
Square both sides of the equation.
\frac{x^{2}a}{x^{2}}=\frac{\left(4y-3x\right)^{2}}{16x^{2}}
Divide both sides by x^{2}.
a=\frac{\left(4y-3x\right)^{2}}{16x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}