Solve for x
x=-\frac{13y}{16}+2700
Solve for y
y=\frac{43200-16x}{13}
Graph
Share
Copied to clipboard
y=\frac{216}{0.065}+\frac{-0.08x}{0.065}
Divide each term of 216-0.08x by 0.065 to get \frac{216}{0.065}+\frac{-0.08x}{0.065}.
y=\frac{216000}{65}+\frac{-0.08x}{0.065}
Expand \frac{216}{0.065} by multiplying both numerator and the denominator by 1000.
y=\frac{43200}{13}+\frac{-0.08x}{0.065}
Reduce the fraction \frac{216000}{65} to lowest terms by extracting and canceling out 5.
y=\frac{43200}{13}-\frac{16}{13}x
Divide -0.08x by 0.065 to get -\frac{16}{13}x.
\frac{43200}{13}-\frac{16}{13}x=y
Swap sides so that all variable terms are on the left hand side.
-\frac{16}{13}x=y-\frac{43200}{13}
Subtract \frac{43200}{13} from both sides.
\frac{-\frac{16}{13}x}{-\frac{16}{13}}=\frac{y-\frac{43200}{13}}{-\frac{16}{13}}
Divide both sides of the equation by -\frac{16}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{43200}{13}}{-\frac{16}{13}}
Dividing by -\frac{16}{13} undoes the multiplication by -\frac{16}{13}.
x=-\frac{13y}{16}+2700
Divide y-\frac{43200}{13} by -\frac{16}{13} by multiplying y-\frac{43200}{13} by the reciprocal of -\frac{16}{13}.
y=\frac{216}{0.065}+\frac{-0.08x}{0.065}
Divide each term of 216-0.08x by 0.065 to get \frac{216}{0.065}+\frac{-0.08x}{0.065}.
y=\frac{216000}{65}+\frac{-0.08x}{0.065}
Expand \frac{216}{0.065} by multiplying both numerator and the denominator by 1000.
y=\frac{43200}{13}+\frac{-0.08x}{0.065}
Reduce the fraction \frac{216000}{65} to lowest terms by extracting and canceling out 5.
y=\frac{43200}{13}-\frac{16}{13}x
Divide -0.08x by 0.065 to get -\frac{16}{13}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}