Solve for x
x=-\frac{7\left(y+1\right)}{3y-2}
y\neq \frac{2}{3}
Solve for y
y=-\frac{7-2x}{3x+7}
x\neq -\frac{7}{3}
Graph
Share
Copied to clipboard
y\left(3x+7\right)=2x-7
Variable x cannot be equal to -\frac{7}{3} since division by zero is not defined. Multiply both sides of the equation by 3x+7.
3yx+7y=2x-7
Use the distributive property to multiply y by 3x+7.
3yx+7y-2x=-7
Subtract 2x from both sides.
3yx-2x=-7-7y
Subtract 7y from both sides.
\left(3y-2\right)x=-7-7y
Combine all terms containing x.
\left(3y-2\right)x=-7y-7
The equation is in standard form.
\frac{\left(3y-2\right)x}{3y-2}=\frac{-7y-7}{3y-2}
Divide both sides by 3y-2.
x=\frac{-7y-7}{3y-2}
Dividing by 3y-2 undoes the multiplication by 3y-2.
x=-\frac{7\left(y+1\right)}{3y-2}
Divide -7-7y by 3y-2.
x=-\frac{7\left(y+1\right)}{3y-2}\text{, }x\neq -\frac{7}{3}
Variable x cannot be equal to -\frac{7}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}