Solve for b
\left\{\begin{matrix}b=-\frac{ty-y+2}{t}\text{, }&t\neq 0\text{ and }t\neq 1\\b\in \mathrm{R}\text{, }&t=0\text{ and }y=2\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{y-2}{y+b}\text{, }&b\neq -2\text{ and }y\neq -b\\t\neq 1\text{, }&y=2\text{ and }b=-2\end{matrix}\right.
Share
Copied to clipboard
y\left(-t+1\right)=2+bt
Multiply both sides of the equation by -t+1.
-yt+y=2+bt
Use the distributive property to multiply y by -t+1.
2+bt=-yt+y
Swap sides so that all variable terms are on the left hand side.
bt=-yt+y-2
Subtract 2 from both sides.
tb=-ty+y-2
The equation is in standard form.
\frac{tb}{t}=\frac{-ty+y-2}{t}
Divide both sides by t.
b=\frac{-ty+y-2}{t}
Dividing by t undoes the multiplication by t.
y\left(-t+1\right)=2+bt
Variable t cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by -t+1.
-yt+y=2+bt
Use the distributive property to multiply y by -t+1.
-yt+y-bt=2
Subtract bt from both sides.
-yt-bt=2-y
Subtract y from both sides.
\left(-y-b\right)t=2-y
Combine all terms containing t.
\frac{\left(-y-b\right)t}{-y-b}=\frac{2-y}{-y-b}
Divide both sides by -y-b.
t=\frac{2-y}{-y-b}
Dividing by -y-b undoes the multiplication by -y-b.
t=-\frac{2-y}{y+b}
Divide 2-y by -y-b.
t=-\frac{2-y}{y+b}\text{, }t\neq 1
Variable t cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}