Solve for x
x=-\frac{10y+39}{y+4}
y\neq -4
Solve for y
y=-\frac{4x+39}{x+10}
x\neq -10
Graph
Share
Copied to clipboard
y\left(x+10\right)=1+\left(x+10\right)\left(-4\right)
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by x+10.
yx+10y=1+\left(x+10\right)\left(-4\right)
Use the distributive property to multiply y by x+10.
yx+10y=1-4x-40
Use the distributive property to multiply x+10 by -4.
yx+10y=-39-4x
Subtract 40 from 1 to get -39.
yx+10y+4x=-39
Add 4x to both sides.
yx+4x=-39-10y
Subtract 10y from both sides.
\left(y+4\right)x=-39-10y
Combine all terms containing x.
\left(y+4\right)x=-10y-39
The equation is in standard form.
\frac{\left(y+4\right)x}{y+4}=\frac{-10y-39}{y+4}
Divide both sides by y+4.
x=\frac{-10y-39}{y+4}
Dividing by y+4 undoes the multiplication by y+4.
x=-\frac{10y+39}{y+4}
Divide -39-10y by y+4.
x=-\frac{10y+39}{y+4}\text{, }x\neq -10
Variable x cannot be equal to -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}