Skip to main content
Solve for V_0 (complex solution)
Tick mark Image
Solve for g (complex solution)
Tick mark Image
Solve for V_0
Tick mark Image
Solve for g
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}gt^{2}+V_{0}t=y
Swap sides so that all variable terms are on the left hand side.
V_{0}t=y-\frac{1}{2}gt^{2}
Subtract \frac{1}{2}gt^{2} from both sides.
tV_{0}=-\frac{gt^{2}}{2}+y
The equation is in standard form.
\frac{tV_{0}}{t}=\frac{-\frac{gt^{2}}{2}+y}{t}
Divide both sides by t.
V_{0}=\frac{-\frac{gt^{2}}{2}+y}{t}
Dividing by t undoes the multiplication by t.
V_{0}=-\frac{gt}{2}+\frac{y}{t}
Divide y-\frac{gt^{2}}{2} by t.
\frac{1}{2}gt^{2}+V_{0}t=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}gt^{2}=y-V_{0}t
Subtract V_{0}t from both sides.
\frac{t^{2}}{2}g=y-V_{0}t
The equation is in standard form.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(y-V_{0}t\right)}{t^{2}}
Divide both sides by \frac{1}{2}t^{2}.
g=\frac{2\left(y-V_{0}t\right)}{t^{2}}
Dividing by \frac{1}{2}t^{2} undoes the multiplication by \frac{1}{2}t^{2}.
\frac{1}{2}gt^{2}+V_{0}t=y
Swap sides so that all variable terms are on the left hand side.
V_{0}t=y-\frac{1}{2}gt^{2}
Subtract \frac{1}{2}gt^{2} from both sides.
tV_{0}=-\frac{gt^{2}}{2}+y
The equation is in standard form.
\frac{tV_{0}}{t}=\frac{-\frac{gt^{2}}{2}+y}{t}
Divide both sides by t.
V_{0}=\frac{-\frac{gt^{2}}{2}+y}{t}
Dividing by t undoes the multiplication by t.
V_{0}=-\frac{gt}{2}+\frac{y}{t}
Divide y-\frac{gt^{2}}{2} by t.
\frac{1}{2}gt^{2}+V_{0}t=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}gt^{2}=y-V_{0}t
Subtract V_{0}t from both sides.
\frac{t^{2}}{2}g=y-V_{0}t
The equation is in standard form.
\frac{2\times \frac{t^{2}}{2}g}{t^{2}}=\frac{2\left(y-V_{0}t\right)}{t^{2}}
Divide both sides by \frac{1}{2}t^{2}.
g=\frac{2\left(y-V_{0}t\right)}{t^{2}}
Dividing by \frac{1}{2}t^{2} undoes the multiplication by \frac{1}{2}t^{2}.