Solve for x
x=\frac{4y+7}{y+2}
y\neq -2
Solve for y
y=-\frac{7-2x}{4-x}
x\neq 4
Graph
Share
Copied to clipboard
y=\frac{1}{-x+4}-\frac{2\left(-x+4\right)}{-x+4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{-x+4}{-x+4}.
y=\frac{1-2\left(-x+4\right)}{-x+4}
Since \frac{1}{-x+4} and \frac{2\left(-x+4\right)}{-x+4} have the same denominator, subtract them by subtracting their numerators.
y=\frac{1+2x-8}{-x+4}
Do the multiplications in 1-2\left(-x+4\right).
y=\frac{-7+2x}{-x+4}
Combine like terms in 1+2x-8.
\frac{-7+2x}{-x+4}=y
Swap sides so that all variable terms are on the left hand side.
-7+2x=y\left(-x+4\right)
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -x+4.
-7+2x=-yx+4y
Use the distributive property to multiply y by -x+4.
-7+2x+yx=4y
Add yx to both sides.
2x+yx=4y+7
Add 7 to both sides.
\left(2+y\right)x=4y+7
Combine all terms containing x.
\left(y+2\right)x=4y+7
The equation is in standard form.
\frac{\left(y+2\right)x}{y+2}=\frac{4y+7}{y+2}
Divide both sides by y+2.
x=\frac{4y+7}{y+2}
Dividing by y+2 undoes the multiplication by y+2.
x=\frac{4y+7}{y+2}\text{, }x\neq 4
Variable x cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}