Solve for x
x=\sqrt{3}y+6-3\sqrt{3}
Solve for y
y=\frac{\sqrt{3}x+9-6\sqrt{3}}{3}
Graph
Quiz
Linear Equation
5 problems similar to:
y = \frac { 1 } { \sqrt { 3 } } ( x - 3 ) + 3 - \sqrt { 3 }
Share
Copied to clipboard
y=\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(x-3\right)+3-\sqrt{3}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
y=\frac{\sqrt{3}}{3}\left(x-3\right)+3-\sqrt{3}
The square of \sqrt{3} is 3.
y=\frac{\sqrt{3}\left(x-3\right)}{3}+3-\sqrt{3}
Express \frac{\sqrt{3}}{3}\left(x-3\right) as a single fraction.
y=\frac{\sqrt{3}x-3\sqrt{3}}{3}+3-\sqrt{3}
Use the distributive property to multiply \sqrt{3} by x-3.
\frac{\sqrt{3}x-3\sqrt{3}}{3}+3-\sqrt{3}=y
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{3}x-3\sqrt{3}}{3}-\sqrt{3}=y-3
Subtract 3 from both sides.
\frac{\sqrt{3}x-3\sqrt{3}}{3}=y-3+\sqrt{3}
Add \sqrt{3} to both sides.
\sqrt{3}x-3\sqrt{3}=3y-9+3\sqrt{3}
Multiply both sides of the equation by 3.
\sqrt{3}x=3y-9+3\sqrt{3}+3\sqrt{3}
Add 3\sqrt{3} to both sides.
\sqrt{3}x=3y-9+6\sqrt{3}
Combine 3\sqrt{3} and 3\sqrt{3} to get 6\sqrt{3}.
\sqrt{3}x=3y+6\sqrt{3}-9
The equation is in standard form.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{3y+6\sqrt{3}-9}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{3y+6\sqrt{3}-9}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=\sqrt{3}y+6-3\sqrt{3}
Divide 3y-9+6\sqrt{3} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}