Solve for x
x=-\frac{5y-2}{9y+5}
y\neq -\frac{5}{9}
Solve for y
y=-\frac{5x-2}{9x+5}
x\neq -\frac{5}{9}
Graph
Share
Copied to clipboard
y\left(9x+5\right)=-5x+2
Variable x cannot be equal to -\frac{5}{9} since division by zero is not defined. Multiply both sides of the equation by 9x+5.
9yx+5y=-5x+2
Use the distributive property to multiply y by 9x+5.
9yx+5y+5x=2
Add 5x to both sides.
9yx+5x=2-5y
Subtract 5y from both sides.
\left(9y+5\right)x=2-5y
Combine all terms containing x.
\frac{\left(9y+5\right)x}{9y+5}=\frac{2-5y}{9y+5}
Divide both sides by 9y+5.
x=\frac{2-5y}{9y+5}
Dividing by 9y+5 undoes the multiplication by 9y+5.
x=\frac{2-5y}{9y+5}\text{, }x\neq -\frac{5}{9}
Variable x cannot be equal to -\frac{5}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}