Solve for y (complex solution)
y=\cos(4\theta )+2\cos(2\theta )-2
Solve for y
y=8\left(\cos(\theta )\right)^{4}-4\left(\cos(\theta )\right)^{2}-3
Solve for θ
\theta =\left(-1\right)\left(\left(-2\right)n_{4}\pi +ArcCosI(\frac{1}{2}\left(1+\left(-1\right)\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})\right)\text{, }n_{4}\in \mathrm{Z}
\theta =\pi +\left(-1\right)ArcCosI(\frac{1}{2}\left(1+\left(-1\right)\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})+2\pi n_{38}\text{, }n_{38}\in \mathrm{Z}
\theta =2\pi n_{39}+\left(-1\right)\pi +ArcCosI(\frac{1}{2}\left(1+\left(-1\right)\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})\text{, }n_{39}\in \mathrm{Z}
\theta =ArcCosI(\frac{1}{2}\left(1+\left(-1\right)\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{3}\pi \text{, }n_{3}\in \mathrm{Z}
\theta =\left(-1\right)\left(\left(-2\right)n_{52}\pi +ArcCosI(\frac{1}{2}\left(1+\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})\right)\text{, }n_{52}\in \mathrm{Z}
\theta =\pi +\left(-1\right)ArcCosI(\frac{1}{2}\left(1+\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})+2\pi n_{82}\text{, }n_{82}\in \mathrm{Z}
\theta =2\pi n_{83}+\left(-1\right)\pi +ArcCosI(\frac{1}{2}\left(1+\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})\text{, }n_{83}\in \mathrm{Z}
\theta =ArcCosI(\frac{1}{2}\left(1+\left(7+2y\right)^{\frac{1}{2}}\right)^{\frac{1}{2}})+2n_{51}\pi \text{, }n_{51}\in \mathrm{Z}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}