Skip to main content
Solve for X
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=\frac{72}{25}x^{4}X+\frac{8}{5}x^{4}\sqrt{16x^{14}}+\frac{27}{5}xX+3x\sqrt{16x^{14}}
Use the distributive property to multiply \frac{8}{5}x^{4}+3x by \frac{9}{5}X+\sqrt{16x^{14}}.
\frac{72}{25}x^{4}X+\frac{8}{5}x^{4}\sqrt{16x^{14}}+\frac{27}{5}xX+3x\sqrt{16x^{14}}=y
Swap sides so that all variable terms are on the left hand side.
\frac{72}{25}x^{4}X+\frac{27}{5}xX+3x\sqrt{16x^{14}}=y-\frac{8}{5}x^{4}\sqrt{16x^{14}}
Subtract \frac{8}{5}x^{4}\sqrt{16x^{14}} from both sides.
\frac{72}{25}x^{4}X+\frac{27}{5}xX=y-\frac{8}{5}x^{4}\sqrt{16x^{14}}-3x\sqrt{16x^{14}}
Subtract 3x\sqrt{16x^{14}} from both sides.
\left(\frac{72}{25}x^{4}+\frac{27}{5}x\right)X=y-\frac{8}{5}x^{4}\sqrt{16x^{14}}-3x\sqrt{16x^{14}}
Combine all terms containing X.
\left(\frac{72x^{4}}{25}+\frac{27x}{5}\right)X=-\frac{8x^{4}\sqrt{16x^{14}}}{5}-3x\sqrt{16x^{14}}+y
The equation is in standard form.
\frac{\left(\frac{72x^{4}}{25}+\frac{27x}{5}\right)X}{\frac{72x^{4}}{25}+\frac{27x}{5}}=\frac{-\frac{32x^{4}\left(|x|\right)^{7}}{5}-12x\left(|x|\right)^{7}+y}{\frac{72x^{4}}{25}+\frac{27x}{5}}
Divide both sides by \frac{72}{25}x^{4}+\frac{27}{5}x.
X=\frac{-\frac{32x^{4}\left(|x|\right)^{7}}{5}-12x\left(|x|\right)^{7}+y}{\frac{72x^{4}}{25}+\frac{27x}{5}}
Dividing by \frac{72}{25}x^{4}+\frac{27}{5}x undoes the multiplication by \frac{72}{25}x^{4}+\frac{27}{5}x.
X=\frac{5\left(-32x^{4}\left(|x|\right)^{7}-60x\left(|x|\right)^{7}+5y\right)}{9x\left(8x^{3}+15\right)}
Divide y-\frac{32x^{4}\left(|x|\right)^{7}}{5}-12x\left(|x|\right)^{7} by \frac{72}{25}x^{4}+\frac{27}{5}x.