Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{q-y}{\left(x-p\right)^{2}}\text{, }&x\neq p\\a\in \mathrm{C}\text{, }&y=q\text{ and }x=p\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{q-y}{\left(x-p\right)^{2}}\text{, }&x\neq p\\a\in \mathrm{R}\text{, }&y=q\text{ and }x=p\end{matrix}\right.
Solve for p (complex solution)
\left\{\begin{matrix}p=x-ia^{-\frac{1}{2}}\sqrt{q-y}\text{; }p=x+ia^{-\frac{1}{2}}\sqrt{q-y}\text{, }&a\neq 0\\p\in \mathrm{C}\text{, }&y=q\text{ and }a=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{\sqrt{a}x+\sqrt{y-q}}{\sqrt{a}}\text{; }p=\frac{\sqrt{a}x-\sqrt{y-q}}{\sqrt{a}}\text{, }&y\geq q\text{ and }a>0\\p=x+\sqrt{-\frac{q-y}{a}}\text{; }p=x-\sqrt{-\frac{q-y}{a}}\text{, }&y\leq q\text{ and }a<0\\p=x\text{, }&y=q\text{ and }a\neq 0\\p\in \mathrm{R}\text{, }&y=q\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
y=a\left(x^{2}-2xp+p^{2}\right)+q
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-p\right)^{2}.
y=ax^{2}-2axp+ap^{2}+q
Use the distributive property to multiply a by x^{2}-2xp+p^{2}.
ax^{2}-2axp+ap^{2}+q=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2axp+ap^{2}=y-q
Subtract q from both sides.
\left(x^{2}-2xp+p^{2}\right)a=y-q
Combine all terms containing a.
\left(x^{2}-2px+p^{2}\right)a=y-q
The equation is in standard form.
\frac{\left(x^{2}-2px+p^{2}\right)a}{x^{2}-2px+p^{2}}=\frac{y-q}{x^{2}-2px+p^{2}}
Divide both sides by x^{2}-2xp+p^{2}.
a=\frac{y-q}{x^{2}-2px+p^{2}}
Dividing by x^{2}-2xp+p^{2} undoes the multiplication by x^{2}-2xp+p^{2}.
a=\frac{y-q}{\left(x-p\right)^{2}}
Divide y-q by x^{2}-2xp+p^{2}.
y=a\left(x^{2}-2xp+p^{2}\right)+q
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-p\right)^{2}.
y=ax^{2}-2axp+ap^{2}+q
Use the distributive property to multiply a by x^{2}-2xp+p^{2}.
ax^{2}-2axp+ap^{2}+q=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2axp+ap^{2}=y-q
Subtract q from both sides.
\left(x^{2}-2xp+p^{2}\right)a=y-q
Combine all terms containing a.
\left(x^{2}-2px+p^{2}\right)a=y-q
The equation is in standard form.
\frac{\left(x^{2}-2px+p^{2}\right)a}{x^{2}-2px+p^{2}}=\frac{y-q}{x^{2}-2px+p^{2}}
Divide both sides by x^{2}-2xp+p^{2}.
a=\frac{y-q}{x^{2}-2px+p^{2}}
Dividing by x^{2}-2xp+p^{2} undoes the multiplication by x^{2}-2xp+p^{2}.
a=\frac{y-q}{\left(x-p\right)^{2}}
Divide y-q by x^{2}-2xp+p^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}