Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for p (complex solution)
Tick mark Image
Solve for p
Tick mark Image
Graph

Similar Problems from Web Search

Share

y=a\left(x^{2}-2xp+p^{2}\right)+q
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-p\right)^{2}.
y=ax^{2}-2axp+ap^{2}+q
Use the distributive property to multiply a by x^{2}-2xp+p^{2}.
ax^{2}-2axp+ap^{2}+q=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2axp+ap^{2}=y-q
Subtract q from both sides.
\left(x^{2}-2xp+p^{2}\right)a=y-q
Combine all terms containing a.
\left(x^{2}-2px+p^{2}\right)a=y-q
The equation is in standard form.
\frac{\left(x^{2}-2px+p^{2}\right)a}{x^{2}-2px+p^{2}}=\frac{y-q}{x^{2}-2px+p^{2}}
Divide both sides by x^{2}-2xp+p^{2}.
a=\frac{y-q}{x^{2}-2px+p^{2}}
Dividing by x^{2}-2xp+p^{2} undoes the multiplication by x^{2}-2xp+p^{2}.
a=\frac{y-q}{\left(x-p\right)^{2}}
Divide y-q by x^{2}-2xp+p^{2}.
y=a\left(x^{2}-2xp+p^{2}\right)+q
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-p\right)^{2}.
y=ax^{2}-2axp+ap^{2}+q
Use the distributive property to multiply a by x^{2}-2xp+p^{2}.
ax^{2}-2axp+ap^{2}+q=y
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2axp+ap^{2}=y-q
Subtract q from both sides.
\left(x^{2}-2xp+p^{2}\right)a=y-q
Combine all terms containing a.
\left(x^{2}-2px+p^{2}\right)a=y-q
The equation is in standard form.
\frac{\left(x^{2}-2px+p^{2}\right)a}{x^{2}-2px+p^{2}}=\frac{y-q}{x^{2}-2px+p^{2}}
Divide both sides by x^{2}-2xp+p^{2}.
a=\frac{y-q}{x^{2}-2px+p^{2}}
Dividing by x^{2}-2xp+p^{2} undoes the multiplication by x^{2}-2xp+p^{2}.
a=\frac{y-q}{\left(x-p\right)^{2}}
Divide y-q by x^{2}-2xp+p^{2}.