Solve for x
x=\frac{9y}{5}+32
Solve for y
y=\frac{5\left(x-32\right)}{9}
Graph
Share
Copied to clipboard
y=\frac{x}{1.8}+\frac{-32}{1.8}
Divide each term of x-32 by 1.8 to get \frac{x}{1.8}+\frac{-32}{1.8}.
y=\frac{x}{1.8}+\frac{-320}{18}
Expand \frac{-32}{1.8} by multiplying both numerator and the denominator by 10.
y=\frac{x}{1.8}-\frac{160}{9}
Reduce the fraction \frac{-320}{18} to lowest terms by extracting and canceling out 2.
\frac{x}{1.8}-\frac{160}{9}=y
Swap sides so that all variable terms are on the left hand side.
\frac{x}{1.8}=y+\frac{160}{9}
Add \frac{160}{9} to both sides.
\frac{5}{9}x=y+\frac{160}{9}
The equation is in standard form.
\frac{\frac{5}{9}x}{\frac{5}{9}}=\frac{y+\frac{160}{9}}{\frac{5}{9}}
Divide both sides of the equation by \frac{5}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{160}{9}}{\frac{5}{9}}
Dividing by \frac{5}{9} undoes the multiplication by \frac{5}{9}.
x=\frac{9y}{5}+32
Divide y+\frac{160}{9} by \frac{5}{9} by multiplying y+\frac{160}{9} by the reciprocal of \frac{5}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}