Solve for x
x=-\frac{y+1}{4\left(y-1\right)}
y\neq 1
Solve for y
y=-\frac{1-4x}{4x+1}
x\neq -\frac{1}{4}
Graph
Share
Copied to clipboard
y\left(4x+1\right)=2x+2x-1
Variable x cannot be equal to -\frac{1}{4} since division by zero is not defined. Multiply both sides of the equation by 4x+1.
4yx+y=2x+2x-1
Use the distributive property to multiply y by 4x+1.
4yx+y=4x-1
Combine 2x and 2x to get 4x.
4yx+y-4x=-1
Subtract 4x from both sides.
4yx-4x=-1-y
Subtract y from both sides.
\left(4y-4\right)x=-1-y
Combine all terms containing x.
\left(4y-4\right)x=-y-1
The equation is in standard form.
\frac{\left(4y-4\right)x}{4y-4}=\frac{-y-1}{4y-4}
Divide both sides by 4y-4.
x=\frac{-y-1}{4y-4}
Dividing by 4y-4 undoes the multiplication by 4y-4.
x=-\frac{y+1}{4\left(y-1\right)}
Divide -1-y by 4y-4.
x=-\frac{y+1}{4\left(y-1\right)}\text{, }x\neq -\frac{1}{4}
Variable x cannot be equal to -\frac{1}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}