Skip to main content
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x^{3}-\frac{1}{2}ax^{2}+x-1=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}x^{3}-\frac{1}{2}ax^{2}-1=y-x
Subtract x from both sides.
\frac{1}{3}x^{3}-\frac{1}{2}ax^{2}=y-x+1
Add 1 to both sides.
-\frac{1}{2}ax^{2}=y-x+1-\frac{1}{3}x^{3}
Subtract \frac{1}{3}x^{3} from both sides.
\left(-\frac{x^{2}}{2}\right)a=-\frac{x^{3}}{3}+y-x+1
The equation is in standard form.
\frac{\left(-\frac{x^{2}}{2}\right)a}{-\frac{x^{2}}{2}}=\frac{-\frac{x^{3}}{3}+y-x+1}{-\frac{x^{2}}{2}}
Divide both sides by -\frac{1}{2}x^{2}.
a=\frac{-\frac{x^{3}}{3}+y-x+1}{-\frac{x^{2}}{2}}
Dividing by -\frac{1}{2}x^{2} undoes the multiplication by -\frac{1}{2}x^{2}.
a=-\frac{2\left(3+3y-3x-x^{3}\right)}{3x^{2}}
Divide y-x-\frac{x^{3}}{3}+1 by -\frac{1}{2}x^{2}.