Solve for a
\left\{\begin{matrix}a=\frac{2\left(x^{3}+3x-3y-3\right)}{3x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=-1\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{1}{3}x^{3}-\frac{1}{2}ax^{2}+x-1=y
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}x^{3}-\frac{1}{2}ax^{2}-1=y-x
Subtract x from both sides.
\frac{1}{3}x^{3}-\frac{1}{2}ax^{2}=y-x+1
Add 1 to both sides.
-\frac{1}{2}ax^{2}=y-x+1-\frac{1}{3}x^{3}
Subtract \frac{1}{3}x^{3} from both sides.
\left(-\frac{x^{2}}{2}\right)a=-\frac{x^{3}}{3}+y-x+1
The equation is in standard form.
\frac{\left(-\frac{x^{2}}{2}\right)a}{-\frac{x^{2}}{2}}=\frac{-\frac{x^{3}}{3}+y-x+1}{-\frac{x^{2}}{2}}
Divide both sides by -\frac{1}{2}x^{2}.
a=\frac{-\frac{x^{3}}{3}+y-x+1}{-\frac{x^{2}}{2}}
Dividing by -\frac{1}{2}x^{2} undoes the multiplication by -\frac{1}{2}x^{2}.
a=-\frac{2\left(3+3y-3x-x^{3}\right)}{3x^{2}}
Divide y-x-\frac{x^{3}}{3}+1 by -\frac{1}{2}x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}