Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{15\left(y+11\right)}{y+60y_{3}}\text{, }&y\neq -60y_{3}\\x\in \mathrm{C}\text{, }&y=-11\text{ and }y_{3}=\frac{11}{60}\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{15\left(4xy_{3}-11\right)}{x-15}\text{, }&x\neq 15\\y\in \mathrm{C}\text{, }&y_{3}=\frac{11}{60}\text{ and }x=15\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{15\left(y+11\right)}{y+60y_{3}}\text{, }&y\neq -60y_{3}\\x\in \mathrm{R}\text{, }&y=-11\text{ and }y_{3}=\frac{11}{60}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{15\left(4xy_{3}-11\right)}{x-15}\text{, }&x\neq 15\\y\in \mathrm{R}\text{, }&y_{3}=\frac{11}{60}\text{ and }x=15\end{matrix}\right.
Graph
Share
Copied to clipboard
yx+60y_{3}x-15y=165
Multiply both sides of the equation by 15.
yx+60y_{3}x=165+15y
Add 15y to both sides.
\left(y+60y_{3}\right)x=165+15y
Combine all terms containing x.
\left(y+60y_{3}\right)x=15y+165
The equation is in standard form.
\frac{\left(y+60y_{3}\right)x}{y+60y_{3}}=\frac{15y+165}{y+60y_{3}}
Divide both sides by y+60y_{3}.
x=\frac{15y+165}{y+60y_{3}}
Dividing by y+60y_{3} undoes the multiplication by y+60y_{3}.
x=\frac{15\left(y+11\right)}{y+60y_{3}}
Divide 165+15y by y+60y_{3}.
yx+60y_{3}x-15y=165
Multiply both sides of the equation by 15.
yx-15y=165-60y_{3}x
Subtract 60y_{3}x from both sides.
\left(x-15\right)y=165-60y_{3}x
Combine all terms containing y.
\left(x-15\right)y=165-60xy_{3}
The equation is in standard form.
\frac{\left(x-15\right)y}{x-15}=\frac{165-60xy_{3}}{x-15}
Divide both sides by x-15.
y=\frac{165-60xy_{3}}{x-15}
Dividing by x-15 undoes the multiplication by x-15.
y=\frac{15\left(11-4xy_{3}\right)}{x-15}
Divide 165-60y_{3}x by x-15.
yx+60y_{3}x-15y=165
Multiply both sides of the equation by 15.
yx+60y_{3}x=165+15y
Add 15y to both sides.
\left(y+60y_{3}\right)x=165+15y
Combine all terms containing x.
\left(y+60y_{3}\right)x=15y+165
The equation is in standard form.
\frac{\left(y+60y_{3}\right)x}{y+60y_{3}}=\frac{15y+165}{y+60y_{3}}
Divide both sides by y+60y_{3}.
x=\frac{15y+165}{y+60y_{3}}
Dividing by y+60y_{3} undoes the multiplication by y+60y_{3}.
x=\frac{15\left(y+11\right)}{y+60y_{3}}
Divide 165+15y by y+60y_{3}.
yx+60y_{3}x-15y=165
Multiply both sides of the equation by 15.
yx-15y=165-60y_{3}x
Subtract 60y_{3}x from both sides.
\left(x-15\right)y=165-60y_{3}x
Combine all terms containing y.
\left(x-15\right)y=165-60xy_{3}
The equation is in standard form.
\frac{\left(x-15\right)y}{x-15}=\frac{165-60xy_{3}}{x-15}
Divide both sides by x-15.
y=\frac{165-60xy_{3}}{x-15}
Dividing by x-15 undoes the multiplication by x-15.
y=\frac{15\left(11-4xy_{3}\right)}{x-15}
Divide 165-60y_{3}x by x-15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}