Solve for y
y=4
Graph
Share
Copied to clipboard
\left(y+1\right)^{2}=\left(\sqrt{29-y}\right)^{2}
Square both sides of the equation.
y^{2}+2y+1=\left(\sqrt{29-y}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
y^{2}+2y+1=29-y
Calculate \sqrt{29-y} to the power of 2 and get 29-y.
y^{2}+2y+1-29=-y
Subtract 29 from both sides.
y^{2}+2y-28=-y
Subtract 29 from 1 to get -28.
y^{2}+2y-28+y=0
Add y to both sides.
y^{2}+3y-28=0
Combine 2y and y to get 3y.
a+b=3 ab=-28
To solve the equation, factor y^{2}+3y-28 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(y-4\right)\left(y+7\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=4 y=-7
To find equation solutions, solve y-4=0 and y+7=0.
4+1=\sqrt{29-4}
Substitute 4 for y in the equation y+1=\sqrt{29-y}.
5=5
Simplify. The value y=4 satisfies the equation.
-7+1=\sqrt{29-\left(-7\right)}
Substitute -7 for y in the equation y+1=\sqrt{29-y}.
-6=6
Simplify. The value y=-7 does not satisfy the equation because the left and the right hand side have opposite signs.
y=4
Equation y+1=\sqrt{29-y} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}