Solve for x
x=\frac{2y+1}{y-3}
y\neq 3
Solve for y
y=\frac{3x+1}{x-2}
x\neq 2
Graph
Share
Copied to clipboard
xy-3x-1=2y
Add 2y to both sides. Anything plus zero gives itself.
xy-3x=2y+1
Add 1 to both sides.
\left(y-3\right)x=2y+1
Combine all terms containing x.
\frac{\left(y-3\right)x}{y-3}=\frac{2y+1}{y-3}
Divide both sides by y-3.
x=\frac{2y+1}{y-3}
Dividing by y-3 undoes the multiplication by y-3.
xy-2y-1=3x
Add 3x to both sides. Anything plus zero gives itself.
xy-2y=3x+1
Add 1 to both sides.
\left(x-2\right)y=3x+1
Combine all terms containing y.
\frac{\left(x-2\right)y}{x-2}=\frac{3x+1}{x-2}
Divide both sides by x-2.
y=\frac{3x+1}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}