Solve for x
x=-\frac{3\left(y-2\right)}{y+2}
y\neq -2
Solve for y
y=-\frac{2\left(x-3\right)}{x+3}
x\neq -3
Graph
Share
Copied to clipboard
xy+3x+3y-6-x=0
Subtract x from both sides.
xy+2x+3y-6=0
Combine 3x and -x to get 2x.
xy+2x-6=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
xy+2x=-3y+6
Add 6 to both sides.
\left(y+2\right)x=-3y+6
Combine all terms containing x.
\left(y+2\right)x=6-3y
The equation is in standard form.
\frac{\left(y+2\right)x}{y+2}=\frac{6-3y}{y+2}
Divide both sides by y+2.
x=\frac{6-3y}{y+2}
Dividing by y+2 undoes the multiplication by y+2.
x=\frac{3\left(2-y\right)}{y+2}
Divide -3y+6 by y+2.
xy+3y-6=x-3x
Subtract 3x from both sides.
xy+3y-6=-2x
Combine x and -3x to get -2x.
xy+3y=-2x+6
Add 6 to both sides.
\left(x+3\right)y=-2x+6
Combine all terms containing y.
\left(x+3\right)y=6-2x
The equation is in standard form.
\frac{\left(x+3\right)y}{x+3}=\frac{6-2x}{x+3}
Divide both sides by x+3.
y=\frac{6-2x}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
y=\frac{2\left(3-x\right)}{x+3}
Divide -2x+6 by x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}