Solve for x
\left\{\begin{matrix}x=-\frac{2yz}{y+2z}\text{, }&y\neq -2z\\x\in \mathrm{R}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{2xz}{x+2z}\text{, }&x\neq -2z\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
xy+2xz=-2yz
Subtract 2yz from both sides. Anything subtracted from zero gives its negation.
\left(y+2z\right)x=-2yz
Combine all terms containing x.
\frac{\left(y+2z\right)x}{y+2z}=-\frac{2yz}{y+2z}
Divide both sides by y+2z.
x=-\frac{2yz}{y+2z}
Dividing by y+2z undoes the multiplication by y+2z.
xy+2yz=-2xz
Subtract 2xz from both sides. Anything subtracted from zero gives its negation.
\left(x+2z\right)y=-2xz
Combine all terms containing y.
\frac{\left(x+2z\right)y}{x+2z}=-\frac{2xz}{x+2z}
Divide both sides by x+2z.
y=-\frac{2xz}{x+2z}
Dividing by x+2z undoes the multiplication by x+2z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}